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Introduction

There are millions of vehicles driving around the world
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Source: https://www.statista.com/statistics/200002/international-car-sales-since-1990/
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Introduction

Self-driving cars: Safe lives, increase mobility and improve
efficiency
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Introduction

Self-driving cars: Levels of Automation (SAE J3016)

[ NON-MONITORED DRIVING I
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Driver is continuously Driver is continuously Driver has to monitor Driver does not have to Driver is not required =)
exercising longitudinal exercising longitudinal the system at all times monitor the system at all during defined use case :
AND lateral control OR lateral control times; must always be o
in a position to resume =
control i

System has longitudinal
AND lateral control in

a specific use case.

System recognizes
the performance limits System can cope
and requests driver to with all situations
resume control within a automatically in a
sufficient time margin defined use case

System can cope
with all situations
autormatically during the
entire journey. No driver
required

Lateral or longitudinal

System has longitudinal
and lateral control in a
specific use case

control is accomplished
by the system

PARTIAL CONDITIONAL HIGH FULL
AUTOMATION AUTOMATION AUTOMATION AUTOMATION
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Introduction

Estimated Tesla Autopilot Miles Dlexfridman
6,000,000,000
Projected Autopilot Miles
5,134,585,459 —
5,000,000,000 - e
994,077,265

4,000,000,000
Current Estimated Autopilot Miles

3,324,020,246— .,/ /

Date: 2020-04-22

852,461,468

3,000,000,000 A

Autopilot Miles

Example L2 System:
Tesla AUtopiIOt 1,000,000,000

3+ billion miles :

2015 2016 2017 2018 2019 2020 2021

2,000,000,000 -

Py, 20 nj_.l_ll_l\..lon

WAYMO N

Driven miles

Example L4 System:
Waymo
20+ million miles -

T >

T I T T
2015 2016 2017 2018 2019 2020 2021

9 =l i .
Workshop RoboCity2030-DIH-CM Luis M. Bergasa e (oboCity200 &‘* i“ﬂiﬁ;dad




Introduction

Predictions about Fully Autonomous Vehicle

Elon Musk, CEO of Tesla

e 2017: "My guess is that in probably 10 years it will be very
unusual for cars to be built that are not fully autonomous.”

e 2018: “The upcoming autonomous coast-to-coast drive will
showcase a major leap forward for our self-driving
technology.”

Rodney Brooks, Professor at the MIT

e =2031: A major city bans manually driven cars from a non-
trivial portion of a city.

e >2045: Majority of US cities ban manually driven cars with
drivers from a non-trivial portion of a city.
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Introduction

Problem: Complexity
Varied environments
Diverse conditions
With other traffic agents
Following “human” laws
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. Pipeline & Modules of a Self-driving Car

Mapping — Perception — Localization — Planning — Control

Perception Decision Making
G —) "
Rad C GPS / Vehicle Precise =
adars ameras S Map ; o
Object-Fusion Localization T e i
- < = =
Planning e
CO nt ro I ‘Shorljﬁgn‘gc ‘Ra‘dar Sy;lomé

. Perception: multiple sensors for understanding both static and
dynamic environments
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From many years ago methods for scene understanding have been
hand-designed and based in models

Detection resuN

Lane
detector

Traffic sign |
~ detector |

.~ Vehicle |
‘ |

Pedestrian i

\detector

£2% Universidad

Workshop RoboCity2030-DIH-CM is M. A& A 0% de Aleald



Perception

3 approaches in time:

~ A (~ ™)
Rule-based Input S Hand-designed Output ]
systems program
. J/ \ /
Q| Classic Machine | ) Hand-designed|  [Mapping 1 ( )
assic Machine _|Hand-designe apping from
E Learning Input features > features Output
o J o J (. /
( ) Learned Mapping f ( )
. earne apping from
Deep Learning Input features foatures Output
\ 4 o _J . _J

Learned from data

From Model-driven to Data-driven algorithms
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Deep Learning

Why Deep Learning? Scalable Machine Learning and Parallelizable

processing
A Deep

Learning

Machine Learning

Most Learning

Performance

._j Algorithms
G — & — e
j Big data
Input Feature extraction Classification Output
Deep Learning Amount of Data
Gan — SEsEers —
@ ® '
Input Feature extraction + Classification Output

Specific HW
CPU -> GPU -> TPU
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Deep Learning

Self-driving real cars difficulties
Scene understanding is hard
Sometimes DL has unintended consequences
Real-time and consumption constrains
Safety is “the first”

Automakers have started to use DL with caution

Factories for collecting data for end-to-end learning
Hybrid-systems
* When DL is not confident or consistent

the system leverages expert domain Non

DL
knowledge DL
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Our approach

To contribute as university researchers to apply DL
techniques to the intelligent vehicles
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Self-driving car

. Goals:
Take advantage of the open-source datasets, frameworks, DL models and
simulators
Run current models and contribute with new ones
Test our contributions in simulation and in a real car
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Semantic Segmentation

. We started in 2014 with the boom of ImageNet for image classification:
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. Known architectures: AlexNet, Inception, VGG, ResNet, ...

. Results highly overcame traditional methods
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Semantic Segmentation

. But soon jumped to SS as a way to unify perception task in self-
driving cars (holistic approach)

Detection resuN

Direct Masks
. Lane
Lane
detector Classifying
o object
Traffic sign .
 detector -> categories at
the pixel-level
Vehicle Vehicles
~ detector :
Pedestrian ; Pedestrians
\detector
Traditional approach: separate detectors Proposed approach: use segmented output

“Can We Unify Monocular Detectors for Autonomous Driving by using the Pixel-Wise Semantic
Segmentation of CNNs?”, E. Romera, L. M. Bergasa and R. Arroyo, in IEEE IV-WS 2016
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Semantic Segmentation: ERFNet

SS problems in 2016:

Current architectures were very costly to process
Important concern in IV - Computational resources

We proposed an architecture:
. Accurate: similar accuracy to top-performing nets
. Efficient: low processing times / memory

ERFNet: Efficient Residual Factorized Network

Encoder-decoder net that combines:
. Residual layers

. Filter factorization (1D kernels)
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Semantic Segmentation: ERFNet
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[Romera et al, 2017] “Efficient ConvNet for Real-time Semantic Segmentation”, E. Romera, J. M. Alvarez, L. M. Bergasa and R. Arroyo,
IEEE Intelligent Vehicles Symposium (IV) 2017, pp. 1789-1794, Redondo Beach (USA), June 2017. [Best Student Paper Award]

[Romera et al, 2018] “ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation”, E. Romera, J. M. Alvarez, L.
M. Bergasa and R. Arroyo, IEEE Transactions on Intelligent Transportation Systems (T-ITS), January 2018. [IEEE T ITS Main
publication (GSM)]

GitHub repository: https://github.com/Eromeralerfnet
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https://github.com/Eromera/erfnet

3D Semantic Segmentation

2D SS lacks space awareness

3D information is needed to map surrounding objects to
navigate safely

3 options to transfer 2D SS to 3D:
Bird’s view
. Stereo Depth
. Geometric 2D/3D projection. Fusion with LiDAR

. Tested in our autonomous vehicle
. ZED camera: 1920x1080 @ 60fps via USB3
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3D Multi-Object Detection
3. Fusion camera & LiDAR -> 3D Multi-Object Detection

2D Box proposals from LIDAR

" 3D semantic point cloud

Outputs

2D semantic
segmentation

1 'T

z'ag/ac

3D detected Boxes on BEV

0=

Image (RGB)
: 512256116 L 512x256x16
256x128x04 250x128x04 >
' : YoLO
\ ERFNet
\‘\ 128x84x128
\. ENCODER DECODER ’
4 ERFNet-YOLOv3 based F/‘a'mev\,/orig_' =

3D semantic point cloud

2D Box proposals from LIDAR

=R 3D detected Boxes on 3D space

Mask-RCNN 2D semantic segmentation
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3D Multi-Object Detection

[Barea et al, 2018] “Vehicle Detection and Localization using 3D LIDAR Point Cloud and Image Semantic Segmentation”, R. Barea, C. Pérez-de-
Rivas, L.M. Bergasa, E. Lopez-Guillén, E. Romera, E. Molinos, M. Ocafia, J. Lopez, IEEE Conference on Intelligent Transportation Systems
(ITSC 2018), pp. 3481-3486, Maui, Hawaii, USA, November 2018.

[Barea et al, 2019] “Integrating well-known CNNs for Multi-Sensor 3D Vehicle Detection in Real Autonomous Driving Environments”, R. Barea,
L.M. Bergasa, E. Romera, E. Lopez-Guillén, O. Pérez, M. Tradacete, J. Lépez, IEEE Conference on Intelligent Transportation Systems (ITSC
2019), pp.1425- 1431, Auckland, New Zealand, October 2019.

NN f‘ . .
Workshop RoboCity2030-DIH-CM Luis M. Bergasa  E=h oboCity2030 %} iﬂgii;dad

drid Robotics Digital Innovation Hub



3D Multi-Object Detection and Tracking

f Detection module N

[ 3D Object Detection!!]

& Input (LiDAR point cloud) j \

!

Matched
Trackers

Tracking module [2)

Data Association(4]

Create/Delete

Output (Tracked objects)

oA

] GV n\\
J DX
EooN
h o AVe
t S
Update B/D
t1 : Update Unmatched
—» 3D Kalman Filter *5heq Memory

Tracker

4
3D Object Detection results in the KITTI validation set
Method Type Frequency Car Pedestrian | Cyclist
of input (Hz) (AP) (AP) (AP)
PointPillars ( ) Voxel 41.7 86.46 57.75 80.057
SECOND (2018) based 19.8 88.61 56.55 80.59
PointRCNN (2018) 6.3 88.94 61.89 85.01
PointRCNN-IoU ( Point 6.3 89.01 62.69 87.48
Part-A”-Free ( ) based 5.6 89.12 70.31 87.65
Part-A%-Anchor ( 75 89.56 65.69 85.50
PV-RCNN ( ) Combination 4.6 90.35 63.12 88.34
Workshop RoboCity2030-DIH-CM oboCity2030
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3D Multi-

Object Detection and Tracking
/~ Detection module \// | Tracking module [2) tput(Trackedobects)\

PointPillars

Data Association(4] P

[ 3D Object Detection!!] }

i 2 v N [ il .;"b::'
t t N
Update B/D

ot : Update Unmatched
—» 3D Kalman Filter *5heq Memory

!

Matched < Create/Delete

\ Input (LIDAR point cloud) /\\ Trackers Tracker /

N

Tracking based on AB3DMOT (online version)

BEV transformation of the detected bounding boxes

3D Kalman Filter predicts the state of trajectories in BEV

The detections at frame t and predicted trajectories are matched using the Hungarian algorithm
Matched trajectories are updated to obtain update trajectories at frame t

Unmatched trajectories are used to delete disappeared trajectories (Death) or create new ones (Birth)
Updated trackers (matched + births) are passed to the following frame
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3D Multi- Object Detectlon and Tracking

L

Karlsruhe Institute of Technology

N

[GOmez-Huelamo et al, 2021] “360° Real-Time and Power-efficient 3D DAMOT for Autonomous Driving applications”, Carlos Gémez-Huélamo,
Javier Del Egido, Luis M. Bergasa, Rafael Barea, Elena Lopez-Guillen, Miguel E. Ortiz-Humani, Miguel Antunes, in Multimedia Tools and
Applications. 2021. In revision.

[Egido et al, 2020] “360° Real-Time 3D Multi-Object Tracking validated in KITTI dataset and CARLA simulator”, Javier Del Egido, Carlos Gomez-
Huélamo, Luis M. Bergasa, Rafael Barea, Elena Lopez-Guilléen, Javier Araluce, Rodrigo Gutiérrez-Moreno, Miguel Antunes, in Workshop of
Physical Agents (WAF). Alcala de Henares, Spain, November 2020
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Behavior Prediction: SmartMOT

é Sensor Fusion )

4 ) 4 )
I Social Context Executive-layer

[ Attention Module information

. W, Nearest object in

4 ) route

HD MAP
& ASAM

Association for Standardization of
Syt

Memory

Update B/ D
Try4 BEV Kalman Update {Tr, Det}unmatched

F“ter {TT, Det}matched_

Tr, oeo * Behavioural use
: : : cases
Matched Create/Delete \_@ a @ vJ
\_ Trackers Tracker

SmartMOT: Behaviour prediction in multi-agent and dynamic environments
* Semantic information of HDmap and ego-vehicle status is added

* Social Context Attention Module (SCAM) fed by Sensors, HDmap (lanes of interest) the ego-vehicle status (velocity)
*  MOT module the same that the previous one
* Output: predicted collisions and actions to be taken
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Behavior Prediction: SmartMOT

Trackers: O

Dynamic trackers: 0

Static trackers: 0

Ego-vehicle velocity (km/h): 0.0

[GOmez-Huélamo et al, 2021] “SmartMOT: Exploiting the fusion of HD Maps and Multi-Object Tracking for Real-Time Motion Prediction in
Intelligent Vehicles applications”, Carlos Gomez-Huélamo, Luis M. Bergasa, Rodrigo Gutiérrez, Felipe Arango, Alejandro Diaz, in IEEE Intelligent
Vehicles Symposium (IV), Nagoya, Japan, July 2021. Accepted for publication

[Gutierrez et al, 2021] “Validation Method of a Self-Driving Architecture for Unexpected Pedestrian Scenario in CARLA Simulator”, Rodrigo
Gutiérrez, Felipe Arango, Carlos Gomez-Huélamo, Luis M. Bergasa, Rafael Barea, Javier Araluce, in IEEE Intelligent Vehicles Symposium (1V),
Nagoya, Japan, July 2021. Accepted for publication
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DL & Self-driving Challenges

B 2" DL

Sensors »| Perception Non DL
Cod
B Q) 1« DL
Sensors » Perception Non DL HD Map —»| Localization |«
. L . Path
HD Map Localization |« Actuation |« planning [
' @ ¥
i ” — < Advanced Navigation architecture
Actuation |+ planning_|* g
@ ¥ |
DL
Classical Navigation architecture
g Q pg) K(((‘ — Non DL

Sensors > %% » Actuation
@ ¥ @

End-to-End Deep Learning Navigation architecture
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DL & Self-driving Challenges
K@Q\

DN,
Electric car
Qe . ) +

Deep Neural Network

“The future of the
DL depends on some
graduate student
who is deeply
suspicious of
everything | have
said.”

Geoffrey Hinton
“Godfather of Deep Learning”
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